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SUMMARY

Centromeres are defined by the presence of chro-
matin containing the histone H3 variant, CENP-A,
whose assembly into nucleosomes requires the
chromatin assembly factor HJURP. We find that
whereas surface-exposed residues in the CENP-A
targeting domain (CATD) are the primary sequence
determinants for HJURP recognition, buried CATD
residues that generate rigidity with H4 are also
required for efficient incorporation into centromeres.
HJURP contact points adjacent to the CATD on the
CENP-A surface are not used for binding specificity
but rather to transmit stability broadly throughout
the histone fold domains of both CENP-A and H4.
Furthermore, an intact CENP-A/CENP-A interface is
a requirement for stable chromatin incorporation
immediately upon HJURP-mediated assembly.
These data offer insight into themechanism bywhich
HJURP discriminates CENP-A from bulk histone
complexes and chaperones CENP-A/H4 for a sub-
stantial portion of the cell cycle prior to mediating
chromatin assembly at the centromere.

INTRODUCTION

The centromere is the site of mitotic kinetochore assembly,

spindle microtubule attachment, and final metaphase sister

chromatid cohesion on each chromosome (Cheeseman and De-

sai, 2008). Centromeres are specified epigenetically (Allshire and

Karpen, 2008), except for in some budding yeasts (Clarke and

Carbon, 1980), and CENP-A (Cse4 in budding yeast, CID in flies,

CenH3 in plants) is a histone H3 variant that has emerged as the

best candidate to carry the centromere-specifying epigenetic

mark (Black and Bassett, 2008). The underlying centromeric

DNA is highly divergent through eukaryotic evolution. In humans,

megabase stretches of highly repetitive a-satellite DNA are typi-

cally found at centromeres (Willard, 1990). CENP-A has been

shown to direct de novo centromere activity to sites that lack
Deve
centromeric repeats, by a pulse of overexpression in fruit fly cells

(Heun et al., 2006; Olszak et al., 2011), initial targeting of CENP-A

to an ectopic locus directly (Mendiburo et al., 2011), or via its

dedicated chromatin assembly factor, HJURP (Barnhart et al.,

2011), and by tethering recombinant CENP-A-containing nucle-

osomal arrays to a solid support in frog egg extracts (Guse et al.,

2011). These artificial conditions generate CENP-A accumula-

tion in the absence of any repetitive centromere DNA, perhaps

recapitulating some aspects of the establishment steps of the

naturally occurring neocentromeres present at low frequency

in the human population (Warburton, 2004). Once established,

newly arising centromeres are propagated in perpetuity and

are thought to recruit constitutive centromere components, as

well as inner centromere and kinetochore components recruited

at mitosis (Bassett et al., 2010; Amor et al., 2004).

There are diverse proposals under consideration for how

CENP-A physically marks centromere location. These proposals

include radical models where CENP-A directs the alteration of

nucleosomal histone stoichiometry (Dalal et al., 2007; Williams

et al., 2009), the recruitment of nonhistone proteins to a nucleo-

some-like particle (Mizuguchi et al., 2007), or the handedness of

DNA wrapping (Furuyama and Henikoff, 2009). Other proposals

include alterations of nucleosome structure and/or dynamics

from within a conventional octameric nucleosome that wraps

DNA in a left-handed manner (Black et al., 2004, 2007a; De-

chassa et al., 2011; Sekulic et al., 2010; Tachiwana et al.,

2011; Panchenko et al., 2011). Perhaps the most conservative

proposal comes from recent experiments in frog egg extracts

in which the unstructured C-terminal 4–6 aa residues are suffi-

cient to impart conventional H3 with the ability to form nucleo-

somal arrays that recruit a functional kinetochore (Guse et al.,

2011).

The faithful delivery of CENP-A to centromeres requires a

conserved chromatin assembly factor termed HJURP in animals

(Dunleavy et al., 2009; Foltz et al., 2009) and Scm3 in yeast (Ca-

mahort et al., 2007; Mizuguchi et al., 2007; Stoler et al., 2007).

How histone variants, in general, are sorted into specific chro-

matin assembly pathways is key to understanding how they

may transmit epigenetic information. However, relatively little is

known of the molecular recognition between histone variants

and their dedicated assembly proteins (De Koning et al., 2007).

CENP-A provides a unique challenge to the cell because it is
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Figure 1. HJURP Binding Is Insufficient for Centromere Targeting of CENP-A

(A) Scheme for HJURP chromosome-tethering assay in U2OS-LacO-TRE cells. In this system, the mCherry-LacI-HJURP fusion protein is expressed at similar

levels to endogenous HJURP (Figure S1B).

(B) Structure of HJURP/CENP-A/H4 complex (PDB 3R45; Hu et al., 2011) highlighting CATD residues swapped for H3 (green) in the various mutant versions. The

location of the proposed HJURP specificity determinant (Ser68; Hu et al., 2011) is also shown.

(C) Representative images of CENP-A, H3, or mutant versions of CENP-A introduced along with LacI-HJURP into U2OS-LacO-TRE cells.

(D) Quantification of the subnuclear localization of the indicated histone constructs. In each case, 100 cells were counted, and the results are representative of

multiple independent experiments.
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present at a remarkably low stoichiometry to bulk H3 variants.

Thus, the faithful sorting of CENP-A away from bulk H3 is pre-

dicted to involve strict recognition by Scm3/HJURP.

Recognition by HJURP was initially proposed to be conferred

by a specific region of CENP-A (Foltz et al., 2009), termed the

CENP-A targeting domain (CATD) for its ability to confer centro-

mere targeting when substituted into conventional H3 (Black

et al., 2004). An H3 chimera containing the CATD (H3CATD) co-

purifies HJURP frommammalian cells, binds directly to recombi-

nant HJURP, and requires HJURP expression for its targeting to

centromeres (Foltz et al., 2009). The view that the CATD harbors

the specificity determinants has been sharply challenged,

however, by recent structural analysis of the CENP-A/H4/

HJURP ternary complex, where it was not apparent how any of

the 22 aa changes within the CATD relative to H3 imparts binding

specificity by HJURP (Hu et al., 2011). Indeed, in this recent

study it was concluded that the artificial nature of the H3CATD

chimera contributed to its access to the HJURP pathway, and

that the primary specificity determinant, Ser68, resides outside

of the CATD (Hu et al., 2011). This proposal was supported by

GST pull-down experiments showing that CENP-A with the

S68Q mutation (glutamine is at the corresponding position in

H3) fails to bind to HJURP, whereas H3 with the Q68S mutation

gains recognition by HJURP (Hu et al., 2011). In addition to this

recent structural work, two orthologous fungal complexes

(Cse4/H4/Scm3 from S. cerevisiae [Zhou et al., 2011] and

K. lactis [Cho and Harrison, 2011]) were solved at high resolution.

Although the proposed recognition residues on the yeast Cse4

proteins were within the CATD region (Cho and Harrison, 2011;

Zhou et al., 2011), they are not conservedwith the corresponding

residues in mammalian CENP-A proteins. Thus, despite major

insight through crystal and NMR structures, there are contradict-

ing data on the means by which mammalian HJURP recognizes

CENP-A/H4.

We now use cell-based, biochemical, and biophysical

approaches to identify the role of the CATD in binding to HJURP

and define the major structural and dynamic requirements for

CENP-A incorporation into centromeric chromatin. During the

course of these studies, we also made the surprising finding

that HJURP binding transmits stability to a large portion of the

histone fold domains of both CENP-A and H4, strongly suggest-

ing that HJURP function extends beyond the classical definition

of a ‘‘histone chaperone’’—shielding its substrate from aggrega-

tion with nucleic acids prior to nucleosome assembly—to also

include stabilizing the folded state of CENP-A/H4 for a substan-

tial portion of the cell cycle.

RESULTS

HJURP Recognition of CENP-A Is Solely Dependent
on Residues in the CATD
Five sets of mutations (called L1, a2, a2.1, a2.2, a2.3) where

CATD residues are replaced with the corresponding residues

from histone H3 each abolish efficient CENP-A targeting to
(E) Quantification of stable CENP-A incorporation into the HJURP-containing array

TetR, and HA-tagged CENP-A mutant proteins and a 1 hr treatment with (gray) o

(F) Sequences of the CENP-A mutants used in these experiments and a summa

See also Figure S1.

Deve
centromeres (Black et al., 2004; Shelby et al., 1997), but it had

not been tested whether or not any of these affect recognition

by HJURP (Figures 1A and 1B). Although both the loop 1 (L1)

and a2 helix of CENP-A are in contact with HJURP in a crystal

structure (Hu et al., 2011), Xu and colleagues concluded that

there are no good candidate side-chain substitutions in this

entire region of CENP-A where H3 residues would preclude

binding. To directly test this proposal, we employed a cell-based

approach that we recently described that monitors HJURP asso-

ciation at an ectopic site and HJURP-mediated stable assembly

of CENP-A into chromatin (Barnhart et al., 2011). This approach

utilizes the LacO/I chromosome-tethering system, where LacI-

fused proteins can be targeted to a chromosomally incorporated

LacO array and subsequently removed by the addition of the

LacI allosteric effector molecule, IPTG (Belmont, 2001; Janicki

et al., 2004). Endogenous (Barnhart et al., 2011) or exogenously

expressed CENP-A protein (Figures 1C and 1D) is efficiently re-

cruited to the HJURP-containing array. Importantly, the centro-

mere targeting of CENP-A is independently measured within

individual cells.

We found that four (L1, a2.1, a2.2, a2.3) of the fivemutants that

fail to target to centromeres are robustly recruited to HJURP-

containing arrays, whereas the fifth (a2) fails to enrich at the

HJURP-containing array or at centromeres (Figures 1C and

1D). In addition, all four of the mutants that retain robust HJURP

recognition and recruitment to the ectopic chromosomal array

are stably incorporated into the ectopic chromosomal locus after

LacI-HJURP removal (Figures 1E and 1F and Figure S1A avail-

able online), suggesting that their failure to target to centromeres

is not due to an inability to undergo HJURP-mediated chromatin

assembly. Perhaps the simplest explanation of these results is

that the CATD provides the primary HJURP recognition determi-

nants, and that a combination of CENP-A-specific residues

spanning the entire a2 helix is required for HJURP binding.

However, based on the proposal of Xu and colleagues that infor-

mation outside of the CATD provides the principal HJURP spec-

ificity determinant (Hu et al., 2011), our data do not exclude an

alternative explanation such as that the chimeric a2 CENP-A

mutant fails to recruit to the HJURP-containing array due to

some type of structural incompatibility. To address this alterna-

tive explanation, we tested in our cell-based approach (Fig-

ure 1A) the CENP-AS68Q and H3Q68S mutations that were

reported in GST pull-down experiments to cause the two histone

variants to switch allegiance: CENP-AS68Q was reported to elim-

inate HJURP binding, and H3Q68S was reported to confer HJURP

binding (Hu et al., 2011). In the crystal structure, there is a hy-

drophobic pocket formed in a b sheet portion of HJURP that

accommodates the side chain of Ser68 in CENP-A but where

there is predicted unfavorable packing (particularly due to clash-

ing with Trp66 of HJURP) with Gln68 in the analogous position of

H3 (Figure 2A) (Hu et al., 2011). In contrast to the earlier GST pull-

down experiments (Hu et al., 2011), we found that substitutions

at this position (S68Q in CENP-A and Q68S in H3) had no

measurable effect on centromere targeting or on recruitment to
. Cells were analyzed 48 hr after cotransfection of mCherry-LacI-HJURP, GFP-

r without (black) 15 mM IPTG.

ry of our results. Black bars indicate residues shared in both H3 and CENP-A.
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Figure 2. CENP-A Ser68 Is Not a Recognition Determinant for HJURP Binding

(A) Highlight of the contact point between CENP-A Ser68 and HJURP Trp66 (PDB 3R45; Hu et al., 2011). The region of HJURP deleted in the HJURP1–62 version is

labeled in black.

(B) Quantification of the subnuclear localization of the indicated mutant histone constructs. WT histones were tested in parallel, and those data are shown in

Figures S2M and S2O.

(C) Representative images of the indicated mutant histone constructs introduced along with LacI-HJURP into U2OS-LacI-TRE cells.

(D–L) SDS-PAGE of the indicated fractions from SEC of the indicated protein mixes.

(M) mCherry-LacI-HJURP1–62 or full-length mCherry-LacI-HJURPW66A was cotransfected into U2OS-LacO-TRE cells with HA-CENP-A or HA-H3, and cells were

analyzed at 48 hr. WT histones were tested in parallel, and those data are shown in Figures S2N and S2P.

(N) Quantification of CENP-A and H3 recruitment to HJURP1–62 and HJURPW66A arrays.

(O) Quantification of stable incorporation of endogenous CENP-A into the HJURP-containing array. Cells cotransfected with mCherry-LacI-HJURP1–62 and GFP-

TetR were treated 48 hr posttransfectionwith (gray) or without (black) 15mM IPTG for 1 hr, and assessed for recruitment of endogenous CENP-A to the array. The

values shown are normalized to the level of CENP-A recruitment to mCherry-LacI-HJURPFull-length.

See also Figure S2.
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the HJURP-containing arrays: CENP-AS68Q behaves the same

as wild-type (WT) CENP-A, and H3Q68S behaves the same as

WT H3 (Figures 2B, 2C, S2M, and S2O).

Our results in this cell-based test may indicate that the

mutations (CENP-AS68Q and H3Q68S) behave differently in cells

than in direct binding reactions as purified components. Alterna-

tively, we considered the possibility that the bead-based pull-

down approaches with histone proteins (Hu et al., 2011) were

problematic and precluded definitive information on the speci-

ficity of this reaction, and that Ser68 is neither necessary nor

sufficient for HJURP recognition. Indeed, background binding

in pull-downs apparently required the use of differential deter-

gent conditions depending on the histone complexes under

investigation (Hu et al., 2011). To avoid such potential experi-

mental vagaries, we monitored the formation of HJURP/CENP-

A/H4 complexes using purified components and size exclusion

chromatography (SEC; Figures 2D–2L). MBP-HJURP (aa 1–80)

undergoes a nearly quantitative shift to a larger species upon

binding to CENP-A/H4 (Figures 2D and 2F). (CENP-A/H4)2 heter-

otetramers also shift to a larger HJURP/CENP-A/H4 heterotrimer

species, but the magnitude of the shift is predictably less

pronounced (Figures 2E and 2F). In the case of MBP-HJURP

and H3/H4, none of the components shift from their original

chromatography behavior upon mixing, indicating that there is

no detectable binding (Figures 2G and 2H). For the mutant

versions, CENP-AS68Q/H4 quantitatively forms a trimer with

HJURP both at moderate and high salt (Figures S2I–S2K

[300 mM NaCl]; Figures 2I and 2J [1 M NaCl]), and H3Q68S/H4

fails to bind to HJURP (Figures 2K and 2L).

In addition to these findings with mutant versions of CENP-A

and H3, mutation of HJURP to remove the steric clashing with

Gln68 of H3 that was initially proposed to confer specificity (Hu

et al., 2011) has no detectable effect on HJURP recognition in

our cell-based approach (Figures 2M, 2N, S2N, and S2P) or in

ternary complex formation monitored by SEC (Figures S2A–

S2H). These mutants include the removal of the side chain of

HJURP (Trp66) that is proposed to clash with Gln68 of H3

(HJURPW66A; Figures 2M, 2N, and S2F–S2H) or removal of two

b strands, including the one containing Trp66 (HJURP1–62;

Figures 2M, 2N, and S2A–S2E). Remarkably, we found that the

small N-terminal portion of HJURP (aa 1–62) is nearly as efficient

as the much larger domain of HJURP previously identified as

sufficient (aa 1–208; Barnhart et al., 2011) in mediating the stable

incorporation of endogenous CENP-A into an ectopic chromo-

somal locus (Figures 2O and S2L). Together, our findings in cells

and using purified components show that Ser68 of CENP-A is

neither necessary nor sufficient for HJURP recognition and

subsequent deposition into chromatin.

HJURP Binding at the a1 Helix of CENP-A Generates
Stability to Most of the Histone Fold Helices
of CENP-A and H4
An intact hydrophobic pocket, wherein Trp66 is the key HJURP

residue, is clearly dispensable for CENP-A recognition (Figure 2),

but its association with the a1 helix of CENP-A is nonetheless

a striking structural feature of the ternary complex (Hu et al.,

2011). To test the impact of this interaction on prenucleosomal

CENP-A/H4, it is necessary to compare HJURP/CENP-A/H4

trimers harboring a version of HJURP with the entire interaction
Deve
interface intact (i.e., HJURP1–80) to a version of this complex

where the hydrophobic pocket, including Trp66, is removed

(i.e., HJURP1–62) (Figure 3A). Hydrogen-deuterium exchange

(H/DX) is a powerful solution-based approach to access

information about protein structure, dynamics, and folding (Eng-

lander, 2006). We and others have coupled H/DX to mass

spectrometry (MS) in order to access dynamic information on

macromolecular interactions, providing key insight to comple-

ment known static structures (Hansen et al., 2011; Mendillo

et al., 2009; Lee et al., 2004; Panchenko et al., 2011). In order

to determine how HJURP binding affects CENP-A/H4 dynamics,

we measured levels of CENP-A/H4 protection in complex with

HJURP relative to independent measurements on (CENP-A/

H4)2 heterotetramers using the conditions optimized for CENP-

A/H4 proteolysis and peptide recovery at the experimental steps

following H/DX (Black et al., 2004). HJURP1–62 (Figure 3B)

protects CENP-A/H4 locally at the region of contact, i.e., the

L1 and the a2 helix of CENP-A as well as portions of the a2

and a3 helices of H4 (Figures 3C, 3E–3H, and S3A–S3D). This

protection is clear even at the latest time point (105 s; Figures

3C and 3G; see a representative example of this in the peptide

highlighted in Figure 3G indicating long-term stability of the inter-

action between HJURP1–62 and CENP-A/H4). Our analysis

further indicates that HJURP1–62 does not interact with the a1

helix of CENP-A because there is no detectable difference in

H/DX rates of this helix in this version of the trimer relative to

the (CENP-A/H4)2 heterotetramer.

Strikingly, HJURP1–80 directs major H/DX protection that ex-

tends much further through the histone fold domains of both

CENP-A and H4 (Figures 3D, 3E–3H, and S3A–S3D) despite

adding new contact points only at the a1 helix of CENP-A

relative to HJURP1–62. The increased protection upon binding

HJURP1–80 was observed in experiments performed in buffers

spanning a large range of ionic strengths (Figures S3E–S3I).

Within the CENP-A a1 helix, many of the helix residues are

strongly protected (Figure 3F; taking 100–1,000 times as long

to reach the same level of deuteration as when bound to

HJURP1–62), strongly suggesting that protection is a result of

restricting transient unfolding of the entire helix that accom-

panies exchange of amide protons. The stability gained in

CENP-A a1 when bound to HJURP1–80 transmits stability

through the complex to additional protection observed in

portions of all histone fold helices in H4 compared to the

HJURP1–62-containing trimer (Figures 3C, 3D, and S3A–S3D).

In total, HJURP1–80 binding generates >20% H/DX protection

at the 105 s time point in 73 residues of the CENP-A and H4 his-

tone fold domains compared to just 42 residues when CENP-

A/H4 is bound by HJURP1–62 (comparing data sets with similar

[90%–95%] extensive peptide coverage). So, rather than serving

as a molecular recognition platform, the interface gained by

the inclusion of aa 63–80 of HJURP (in the HJURP1–80-contain-

ing complex) greatly restricts the conformational flexibility of

CENP-A/H4.

Three Surface-Exposed Residues within the CATD
Are Sufficient for Recognition by HJURP
Because the CATD carries the information to confer HJURP

binding, we next sought to identify the specific CATD residues

conferring recognition by HJURP. We started by using the
lopmental Cell 22, 749–762, April 17, 2012 ª2012 Elsevier Inc. 753



Figure 3. HJURP Interactions with the a1 Helix of CENP-A Stabilize the Histone Fold Domains of Both CENP-A and H4

(A) Experimental scheme for determining H/DX of protein complexes at various time points.

(B) Structure of HJURP/CENP-A/H4 complex (PDB 3R45; Hu et al., 2011). The region of HJURP absent from the HJURP1–62 version is labeled in black.

(C and D) Protection fromH/DX upon binding HJURP1–62 (C) or HJURP1–80 (D) ismapped onto the structure of CENP-A/H4 (PDB 3NQJ; Sekulic et al., 2010). These

data correspond to the 105 s time point. Labeling is as indicated in the legend, indicating the consensus behavior of all overlapping peptides at each position

(white indicates the small number of positions lacking peptide coverage).

(E) Diagram of CENP-A secondary structure with red boxes corresponding to locations of example peptides shown in (F) and (G).

(F and G) Comparison of H/DX for the indicated CENP-A peptides from each of the indicated complexes. Dotted lines indicate maximum levels of deuteration

determined from fully deuterated samples.

(H) Raw MS data for the CENP-A peptide shown in (F). Red stars indicate peptide centroid value. ‘‘All H’’ is data from the nondeuterated control sample.

See also Figure S3.
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crystal structure of the HJURP/CENP-A/H4 complex (Hu et al.,

2011) to predict which of the 22 aa specific to the CATD of

CENP-A are critical specificity determinants. We focused on

six candidate residues on the surface of the CATD, one in L1

(Asn85) and five in the a2 helix (Ala88, Gln89, Leu92, His104,

and Leu112) (Figures 4A and 4B). Indeed, a version of H3

carrying these six substitutions (construct H3HJURP Surf.) is suffi-

cient for recruitment to the HJURP-containing chromosomal

array (Figures 4C and 4D). We noted, however, that unlike the

H3CATD, which is stably incorporated at both the HJURP-con-

taining array (Figure S4A) and endogenous centromeres, recog-
754 Developmental Cell 22, 749–762, April 17, 2012 ª2012 Elsevier I
nition of H3HJURP Surf. by HJURP (either in the presence or

absence of mCherry-LacI-HJURP) was not accompanied by

delivery to the centromere (Figures 4C, 4D, S4B, and S4C). To

determine the minimal set of residues that confers HJURP

recognition, we generated a set of swap mutations of the six

CENP-A positions in the H3HJURP Surf. construct. We tested first

if the single substitution of His104 into histone H3, replacing

a glycine, could confer access to HJURPbecause this is perhaps

the single most dramatic side-chain addition and highly compat-

ible with the contacting HJURP surface (construct H3G104H)

(Figure 4A). We found, however, that this single alteration
nc.



Figure 4. As Few as Three Residues within the CATD Are Sufficient for HJURP Specificity

(A) Structure of HJURP/CENP-A/H4 structure (PDB 3R45; Hu et al., 2011) highlighting six candidate residues within the CATD to confer HJURP specificity.

(B) Sequences of versions of H3 carrying the indicated CATD residues and summary of our results. Black bars indicate residues shared in both H3 and CENP-A,

and boxes highlight the six candidate residues.

(C) Quantification of the subnuclear localization of the indicated histone constructs. In each case, 100 cells were counted, and the results are representative of

multiple independent experiments.

(D) Representative images of the indicated histone constructs introduced along with mCherry-LacI-HJURP into U2OS-LacO-TRE cells.

See also Figure S4.
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is insufficient to confer HJURP recognition (Figures 4C and 4D).

Furthermore, the N-terminal three substitutions (Asn85, Ala88,

and Gln89; construct H3R85N/S88A/S89Q) or C-terminal

three substitutions (Leu92, His104, and Leu112; construct

H3M92L/G104H/C112L) are not sufficient for HJURP recognition

when separated from each other (Figures 4C and 4D). These

findings indicate that CENP-A-specific contact points within

both the N- and C-terminal portions of the CATD are required

for recognition by HJURP. Indeed, combining the C-terminal

two substitutions (His104 and Leu112) with either one of the

two most dramatic substitutions at the N-terminal portion of

the CATD (Asn85 or Gln89) is sufficient to target CENP-A to

the chromosomal HJURP array (Figures 4C and 4D; constructs

H3R85N/G104H/C112L and H3S89Q/G104H/C112L).
Deve
CENP-A Hydrophobic Stitch Residues Are Required
for Efficient Incorporation into Centromeres
Our finding that robust HJURP binding is insufficient for centro-

mere targeting of CENP-A or the H3 gain-of-function mutants

(Figures 1 and 4) suggests that other CATD features exist that

are vital for generating centromere-specifying nucleosomes.

With the first-available high-resolution structure of CENP-A (in

the context of the (CENP-A/H4)2 heterotetramer) in hand, we

initially described three distinguishing features conferred by

the CATD (Sekulic et al., 2010). One unique feature is the bulged

L1 that generates a surface of opposite charge (Figure S5A)

(Sekulic et al., 2010) that is exposed on the face of the nucleo-

some (i.e., not occluded by DNA binding; Tachiwana et al.,

2011). Mutation of the L1 residues to reverse the surface charge,
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Figure 5. CENP-A Hydrophobic Stitch Residues Are Required for Assembly into Centromeric Chromatin

(A) Sequence of the CENP-AH4 Int. mutant containing six H3 residues, highlighted with black circles.

(B) Structure of the CENP-A-containing nucleosome (PDB 3AN2; Tachiwana et al., 2011) highlighting the six CENP-A aa positions substituted with H3 residues in

CENP-AH4 Int..

(C) Quantification of the subnuclear localization of CENP-AH4 Int..

(D) The average centromere intensity was measured for the population of cells in (C) with indicated histone localizing to the centromere. Intensity is normalized to

WT CENP-A.

(E) Representative images of CENP-AH4 Int. introduced along with LacI-HJURP into U2OS-LacO-TRE cells.

See also Figure S5.
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however, does not affect CENP-A centromere targeting (Figures

S5B and S5C), and engineered reduction of the L1 bulge was re-

ported to reduce stability, but not efficient targeting (Tachiwana

et al., 2011). Another unique feature is rotation at the CENP-A/

CENP-A interface of the heterotetramer, but the residues

(His104 and Leu112) implicated in accommodating the rotation

(Sekulic et al., 2010) are also key for recognition by HJURP

(Figures 4C and 4D). In addition it is not yet clear to what extent

the tendency to form a rotated CENP-A/CENP-A interface

affects CENP-A-containing nucleosomes because in the avail-

able crystal structure of the nucleosome, the CENP-A/CENP-A

interface is rotated outward to a conventional orientation (Tachi-

wana et al., 2011).

The third unique feature encoded by the CATD is conferred

by six residues that contact histone H4 and generate hydro-

phobic stitches (Sekulic et al., 2010). The hydrophobic stitches

reduce 10-fold the conformational flexibility at the CENP-A/H4

interface (Figures 5A and 5B) (Black et al., 2004). In addition,

the CENP-A-specific side-chain interactions with H4 are nearly

identical in the subnucleosomal heterotetramer and nucleosome

structures (Figure S5D) (Sekulic et al., 2010; Tachiwana et al.,

2011). In order to test the requirement of the hydrophobic

stitches in centromeric chromatin assembly, we mutated all six

CENP-A hydrophobic residues to their H3 counterparts: V82T,

F84L, W86F, L91V, A98S, and F101Y. The resulting mutant

protein (CENP-AH4 Int.) enriches at the HJURP-containing array

in 93% of cells but loses centromere targeting in the majority

(71%) of cells (Figures 5C–5E, S5E, and S5F). The remaining
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29% of cells have detectable centromere accumulation,

although the level of accumulation is reduced �20-fold

compared to WT CENP-A (Figure 5D). Therefore, we conclude

that the hydrophobic stitch residues fulfill a requirement for effi-

cient CENP-A assembly that is downstream of HJURP binding.

An Intact CENP-A/CENP-A Interface Is Required for
Nucleosome Formation
CENP-A/H4 exists as a heterotetramer in solution with two

copies of CENP-A (Black et al., 2004), and there are two copies

of CENP-A in the available nucleosome crystal structure (Tachi-

wana et al., 2011). Binding of HJURP/Scm3 occludes the CENP-

A/CENP-A interface (Cho and Harrison, 2011; Hu et al., 2011;

Zhou et al., 2011), but HJURP assembles initial products

in vitro that are nonetheless thought to include two copies of

human CENP-A (or its yeast counterparts; Barnhart et al.,

2011; Dechassa et al., 2011; Shuaib et al., 2010; Mizuguchi

et al., 2007; Xiao et al., 2011). In any eukaryote, the composition

of the centromeric nucleosome in vivo is far less clear, with

proposed models including an octameric nucleosome contain-

ing two copies each of CENP-A/H4/H2A/H2B (mammals,

budding yeast, and insects; Camahort et al., 2007; Sekulic

et al., 2010; Shelby et al., 1997; Foltz et al., 2006; Zhang et al.,

2012), a tetrasome containing two copies each of CENP-A/H4

(yeast; Williams et al., 2009), nucleosome-like particles lacking

H2A/H2B but retaining Scm3 after assembly into DNA (yeast;

Mizuguchi et al., 2007), and,most radically, a hemisome contain-

ing one copy each of CENP-A/H4/H2A/H2B (insects; Dalal et al.,
nc.



Figure 6. An Intact CENP-A/CENP-A Interface Is a Requirement for HJURP-Mediated Nucleosome Assembly

(A) Diagram of the CENP-AH115A/L128A mutant protein. Black circles indicate mutated residues.

(B) Structure of the CENP-A nucleosome (PDB 3AN2; Tachiwana et al., 2011), with inset depicting residues H115 and L128 within the CENP-A/CENP-A interface.

(C) Gel filtration chromatograph comparing elution profiles of (CENP-A/H4)2 and (CENP-AH115A/L128A/H4).

(D–F) SDS-PAGE of the indicated fractions from SEC of the indicated protein mixes.

(G) Representative images of cells cotransfected with mCherry-LacI-HJURP, GFP-TetR, and HA-tagged CENP-AH115A/L128A and treated with or without IPTG for

1 hr prior to processing for immunofluorescence. The boxes indicate the location of the LacO array identified with TetR. Scale bar, 5 mm.

(H) Quantification of CENP-AH115A/L128A stable incorporation into the HJURP-containing array with (gray) or without (black) 15 mM IPTG. At least 30 cells were

counted over multiple experiments.

See also Figure S6.
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2007) that wraps DNA with the reverse handedness of conven-

tional nucleosomes (insects and yeast; Furuyama and Henikoff,

2009). In models including two copies of CENP-A, an intact

CENP-A/CENP-A interface is key, whereas it would be unused

and therefore dispensable in a hemisome with a single copy of

CENP-A (Dalal et al., 2007; Furuyama and Henikoff, 2009).

In (CENP-A/H4)2 heterotetramers that spontaneously form

upon coexpression in bacteria or after stepwise assembly into

nucleosomes, the two CENP-A chains are held together by

hydrophobic interactions of several side chains (including those

from Leu111, Leu128, and Ile132) and an intermolecular salt
Deve
bridge between His115 on one chain and Asp125 on the other

(Sekulic et al., 2010; Tachiwana et al., 2011) (Figures 6A and

6B). In this way, the CENP-A/CENP-A interface is held together

in a nearly identical fashion as the H3/H3 interface in the conven-

tional nucleosome (Luger et al., 1997; Sekulic et al., 2010; Tachi-

wana et al., 2011). We designed a mutant version of CENP-A

(CENP-AH115A/L128A) in which the salt bridge is broken, and the

otherwise hydrophobic interface is weakened (Figures 6A and

6B). Recombinant CENP-AH115A/L128A/H4 chromatographs as a

single peak, consistent with a uniform dimeric species (the cal-

culated molecular weight of the heterodimer is 27.5 kDa with
lopmental Cell 22, 749–762, April 17, 2012 ª2012 Elsevier Inc. 757



Figure 7. Summary of CENP-A Features

Required for Centromeric Nucleosome

Assembly

Structure of CENP-A/H4 (PDB 3NQJ; Sekulic

et al., 2010) highlighting CENP-A residues

required for HJURP specificity (purple), a rigid

interface with H4 (yellow), and formation of an

intact CENP-A/CENP-A interface required for

assembling into octameric nucleosomes (cyan).

Developmental Cell

Recognizing and Chaperoning Nascent CENP-A
WT CENP-A/H4 chromatographing as a uniform heterotetramer

of calculated molecular weight equaling 55 kDa; Figure 6C). Gel

filtration of CENP-AH115A/L128A/H4 mixed with MBP-HJURP

shows robust formation of a HJURP/CENP-AH115A/L128A/H4

ternary complex (Figures 6D–6F). This finding clearly indicates

that HJURP can trimerize with CENP-A/H4 that initially exists

as either a (CENP-A/H4)2 heterotetramer (Figure 2F) or a

CENP-A/H4 heterodimer (Figure 6F). Using our cell-based

approach, we find that the CENP-A dimer mutant is clearly en-

riched at the HJURP array but is nonetheless severely compro-

mised in targeting to centromeres (Figures S6A and S6B). At

the HJURP array, CENP-AH115A/L128A fails to stably incorporate

into chromatin at the array following IPTG treatment, with its tar-

geting dependent on a persistent LacI-HJURP/LacO interaction

(Figures 6G and 6H). These data suggest a strong requirement

for an intact CENP-A/CENP-A interface in HJURP-mediated

chromatin assembly at an ectopic chromosome locus.

DISCUSSION

Regarding the proposal that the CATD plays a vital role in centro-

mere propagation, we now provide evidence that it contains the

exposed recognition residues for HJURP association. Although

a surface on the a1 helix of CENP-A, lying outside of the

CATD, is part of the HJURP binding interface (Hu et al., 2011),

it is not used for molecular recognition but rather as a contact

point that confers stability to many of the a helices of the histone

folds of CENP-A and H4 (Figure 3). Furthermore, our finding here

that the interior residues that rigidify the interface between

CENP-A and H4 are not involved in HJURP recognition but are

required for efficient centromere localization of CENP-A (Fig-

ure 5) strongly suggests a vital role for specialized intranucleoso-

mal dynamics in specifying centromere location. Along with

previous functional analysis that implicated the CATD in centro-

mere function (Black et al., 2007b), our findings here strongly

support the notion that the CATD provides the key features for

distinguishing CENP-A prenucleosomal complexes from their

conventional counterparts and for rigid intranucleosomal

dynamics specifically required for generating centromeric chro-

matin (Figure 7).

Specificity of HJURP Binding Is Achieved through
Cooperative Contact Sites Spread across the Surface
of the CATD
The six CENP-A-specific residues within the CATD that we found

important for HJURP recognition include one on L1 (Asn85),
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three on the N-terminal portion of the a2 helix (Ala88, Gln89,

and Leu92), and two on the C-terminal portion of the a2 helix

(His104 and Leu112) (Figure 4A). His104 is important for recog-

nition but is insufficient by itself (Figures 4C and 4D, construct

H3G104H) or in combination with substitutions at the positions

corresponding to Leu92 and Leu112 (Figures 4C and 4D,

construct H3M92L/G104H/C112L) to confer H3 with the surface

information to be recognized by HJURP. In conjunction with

N-terminal substitutions (i.e., with either Asn85 or Gln89), sub-

stitutions of His104 and Leu112 are minimally sufficient to

confer access to HJURP (Figures 4C and 4D, constructs

H3R85N/G104H/C112L and H3S89Q/G104H/C112L). These findings lead

to a model in which CENP-A-specific exposed residues at both

the N- and C-terminal portion of the CATD cooperate to form

the recognition surface for HJURP.

HJURP Is a Protein Folding Chaperone, Not Just
a Histone Chaperone
Although the contact point between the C-terminal b sheet

region (i.e., aa 63–80) of HJURP and the a1 helix of CENP-A is

not involved in discriminating CENP-A from bulk H3, our findings

that this region of HJURP is responsible for transmitting broad

stability to CENP-A/H4 (Figure 3) strongly suggest that this

portion of the HJURP/CENP-A interface is critical for a histone

stabilizing function of HJURP. The stability induced by

HJURP1–62 binding is most substantial within the CATD (Fig-

ure 3C) because it lacks any major contact with the a1 helix of

CENP-A (Hu et al., 2011). Inclusion of the contact residues in

the HJURP1–80 construct spreads the induced stability, as

measured by a dramatic slowing in backbone amide proton

exchange, throughout much of the histone folds of both CENP-

A and H4 (Figure 3D). The term ‘‘molecular chaperone’’ was

initially used in the world of protein biochemistry to describe

histone chaperones (Laskey et al., 1978), which have subse-

quently been largely distinguished from other classes of molec-

ular chaperones (i.e., proteins that assist folding of their

substrates by either stabilizing correctly folded proteins, or de-

stabilizing misfolded proteins to allow a subsequent refolding

attempt; Hartl et al., 2011). Our finding with HJURP provides

one example of a protein that challenges this distinction because

it has the hallmarks of a histone chaperone and a protein folding

chaperone. HJURP certainly does not require ATP, a property of

many protein folding chaperones such as chaperonins and heat

shock proteins, but HJURP qualifies as a protein folding chap-

erone in the sense that it stabilizes its substrate and is not

a component of the final product (similar to a proposal for trigger
nc.
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factor function in ribosome assembly; Martinez-Hackert and

Hendrickson, 2009) because HJURP is only present at centro-

meres for a portion of one phase (G1) of the cell cycle (Foltz

et al., 2009; Dunleavy et al., 2009).

The molecular chaperone function of HJURP is likely to be a

conserved one because Scm3 has been reported to increase

the solubility of Cse4/H4 in the budding yeast system (Xiao

et al., 2011). It will be interesting to investigate whether or not

other so-called histone chaperones confer similar stability to

their bulk histone substrates as there is within the ternary

HJURP/CENP-A/H4 complex (Figure 3), especially in light of

the finding that (H3/H4)2 heterotetramers are intrinsically

10-fold more flexible than (CENP-A/H4)2 heterotetramers (Black

et al., 2004). HJURP binds to CENP-A/H4 upon new CENP-A

protein expression in late S/G2 phases of the cell cycle (Foltz

et al., 2009; Shelby et al., 2000) and must chaperone CENP-

A/H4 until new CENP-A nucleosome assembly occurs in the

following G1 phase (Dunleavy et al., 2009; Jansen et al., 2007;

Schuh et al., 2007). Thus, for HJURP, its role in preventing inap-

propriate interactions between CENP-A/H4 and other macro-

molecules occurs over timescales that likely exceed those for

the bulk histone assembly pathways where histone deposition

occurs shortly after histone synthesis. Furthermore, the degree

of stability that HJURP induces to much of CENP-A/H4 is

substantial, similar to the extentmeasuredwithin the rigid interior

of nucleosomes (Black et al., 2007a).

CATD Function Extends beyond HJURP Recognition
in Mammals
Budding yeast Cse4 lacks the positive charge of its human coun-

terpart on its bulged loop L1 that alters the nucleosome surface

(Cho and Harrison, 2011; Sekulic et al., 2010; Tachiwana et al.,

2011). In mammals, this positively charged loop is a strong

candidate to generate a binding surface for centromere proteins,

such as CENP-N, which recognizes nucleosomes assembled

with the H3CATD chimera (Carroll et al., 2009; Guse et al.,

2011). Although the conformational flexibility of yeast centro-

meric histone complexes has not been directly tested, budding

yeast Cse4 is reported to lack hydrophobic stitching with histone

H4 (Cho and Harrison, 2011). These points of evolutionary varia-

tion led to the proposal that the budding yeast CATD has the sole

task of providing recognition by Scm3 (Cho and Harrison, 2011),

perhaps as an adaptation upon the loss in some yeasts of epige-

netic centromeres and the gain of DNA sequence-specified

centromeres. On the other hand, in the budding yeast S. cerevi-

siae, the CATD is recognized by Scm3 (Zhou et al., 2011) and

recruits the Psh1 E3 ubiquitin ligase (Ranjitkar et al., 2010) to

CENP-A nucleosomes misincorporated at noncentromeric loci

(Hewawasam et al., 2010; Ranjitkar et al., 2010), suggesting

important CATD contributions before and after nucleosome

assembly. The swapping at six positions of CENP-A/H3 resi-

dues at the H4 contact surface, individually subtle changes

that reduce polarity or increase the size of hydrophobic side

chains (Figure 4A), leads to a loss of faithful localization at centro-

meres despite robust recruitment to the HJURP-containing

chromosomal array (Figures 4C and 4D). Our clear delineation

in function of CATD residues involved in HJURP recognition

from the buried hydrophobic stitches (Figure 7) leads to the

simple conclusion that mammalian CATD function includes (1)
Deve
sorting of newly expressed CENP-A protein from bulk histones,

(2) assembly at centromeres, and (3) conformational rigidity

unique to centromere-specifying nucleosomes. Although we

prefer this model because it is based primarily on structure-

based mutational analysis (Figures 4 and 5), it is possible that

additional CATD-encoded features exist that are required for

function. To this point, we note that whereas four (L1, a2, a2.1,

and a2.2) of the five defective CENP-A mutants examined in

Figure 1 lack HJURP association and/or involve removal of

hydrophobic stitch residues, the a2.3 mutant is clearly recog-

nized by HJURP and contains all six of the hydrophobic stitch

residues.

A Requirement of Forming Octameric Nucleosomes
for CENP-A Assembly at Centromeres
There are now biochemical and structural data indicating that

CENP-A assembled with purified histones onto nucleosomal

DNA sequences (either centromere derived or not) forms an

octameric histone core that is wrapped in the conventional left-

handed manner (Dechassa et al., 2011; Sekulic et al., 2010; Pan-

chenko et al., 2011; Barnhart et al., 2011). A potential exception

to this is in budding yeast, where the >80% AT-rich centromere

sequence (Clarke and Carbon, 1985) precludes efficient nucleo-

some formation (Camahort et al., 2009; Xiao et al., 2011) but is

reportedly conducive to forming nonnucleosomal particles con-

taining Scm3 but lacking H2A/H2B dimers (Xiao et al., 2011). The

hemisome model, however, proposes that the major form of

CENP-A-containing nucleosomes at centromeres contains only

a single copy of each histone (Dalal et al., 2007; Furuyama and

Henikoff, 2009). Our precise targeting of the CENP-A/CENP-A

interface with the CENP-AH115A/L128A mutant that retains full

recognition by HJURP but completely fails to track to centro-

meres (Figures S6A and S6B) suggests that this interface is

essential for stable assembly at centromeres. Furthermore, the

CENP-AH115A/L128A mutant cannot stably assemble into chro-

matin after association on the chromosomewith HJURP (Figures

6G and 6H), as opposed to the stable incorporation ofWTCENP-

A and all other mutants that we tested that maintain HJURP

association (Figures 1 and S4). Thus, our data support the notion

that CENP-A/CENP-A interactions soon upon HJURP-mediated

deposition onto DNA are required for retaining CENP-A in

centromeric chromatin. This is probably a conserved feature of

centromeric nucleosomes, and others have very recently re-

ported that engineered disruption of the CENP-ACID/CENP-

ACID interface reduces its centromere localization in fruit fly cells

(Zhang et al., 2012).

We favor a model wherein the biochemically stable octameric

form of CENP-A nucleosomes (Camahort et al., 2009; Sekulic

et al., 2010; Tachiwana et al., 2011; Kingston et al., 2011) is

the most prominent form at mammalian centromeres, but not

at the exclusion of intermediate forms that occur during

a program of G1 centromerematuration or immediately following

redistribution of the CENP-A proteins on the daughter strands of

the S phase replication fork (Black and Cleveland, 2011). Nor

does our work exclude models proposing two pools of CENP-

A at mitotic chromosomes, with one proposal involving a major

pool consisting of stable octamers for epigenetic memory of

centromere location and a small population of a specialized

form (i.e., tetrasomes [Williams et al., 2009], hemisomes [Dalal
lopmental Cell 22, 749–762, April 17, 2012 ª2012 Elsevier Inc. 759



Developmental Cell

Recognizing and Chaperoning Nascent CENP-A
et al., 2007; Furuyama and Henikoff, 2009], or hexasomes [Miz-

uguchi et al., 2007; Xiao et al., 2011]) at the foundation of the

mitotic kinetochore (Mizuguchi et al., 2007; Xiao et al., 2011).

On the other hand because the small (four to six residue) unstruc-

tured C-terminal tail of CENP-A is sufficient when transplanted

onto histone H3 to generate nucleosomal arrays capable of

nucleating a functional kinetochore in frog egg extracts (Guse

et al., 2011), there is a precedent for at least one system where

such radical nucleosome specialization is not required for an

important mitotic role of centromeric chromatin.
Conclusions
There is broad interest in how histones transmit epigenetic

memory through dynamic processes such as transcription and

replication, and histone chaperones play a fundamental role in

directing these processes. Centromeric epigenetic memory is

transmitted from cell to cell and through generations, so the

fidelity of the CENP-A nucleosome deposition is perhaps the

highest of any case of histone-based epigenetic memory. In

the last year, the centromere field has quickly accumulated

several high-resolution snapshots of CENP-A in various contexts

(Cho and Harrison, 2011; Hu et al., 2011; Sekulic et al., 2010; Ta-

chiwana et al., 2011; Zhou et al., 2011). We used information

from these structures alongwith a powerful cell-based functional

assay and present here a sophisticated description of the

elements on CENP-A and its chaperone HJURP governing their

molecular recognition. The cell-based approaches were essen-

tial for us to properly assign function to particular elements in

each protein, and in the course of our studies, we clarified earlier

confusion of the primary determinants for HJURP recognition

(Foltz et al., 2009; Hu et al., 2011). Recognition is a key step in

robust propagation of centromere-specifying nucleosomes, re-

plenishing each cell cycle the foundational chromatin that

ensures proper genome transmission at cell division.
EXPERIMENTAL PROCEDURES

Cell-Based Experiments

U2OS-LacO-TRE cells containing 200 copies of a 256 3 LacO/96 3 tetracy-

cline-responsive element array on chromosome 1 (Janicki et al., 2004; kindly

provided by S. Janicki, Wistar Institute, Philadelphia, PA) were cultured in

DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100 mg/ml strepto-

mycin, and 100 mg/ml hygromycin. Cells were plated onto coverslips in 6-well

dishes 24 hr prior to transfection. Cells were cotransfected using FuGENE

(Roche) at a 2:1 ratio (HJURP construct:H3 or CENP-A construct). CENP-A

replacement mutants (L1, a2, a2.1, a2.2, a2.3) have been described previously

(Shelby et al., 1997; Black et al., 2004). CENP-A andH3mutant constructs used

for transient transfections (CENP-AS68Q, H3Q68S, H3CATD, H3HJURP Surf.,

H3G104H, H3R85N/S88A/S89Q, H3M92L/G104H/C112L, H3R85N/G104H/C112L, and

H3S89Q/G104H/L112C) were generated in pCDNA3.1 vector with a triple hemag-

glutinin (HA) fusion tag on theN terminus. CENP-AH4 Int. andCENP-AH115A/L128A

weregenerated in apBABEvectorwith anN-terminal yellowfluorescentprotein

(YFP) tag.mCherry-LacI-HJURP1–62 andmCherry-LacI-HJURPW66Amutations

were generated from full-length mCherry-LacI-HJURP (Barnhart et al., 2011).

Mutants were generated by one or multiple PCR site-directed mutagenesis

steps, except for constructs H3HJURP Surf. and CENP-AH4 Int., which were

synthesized as complete ORFs (GenScript) and subsequently shuttled into

pCDNA3.1. In all cases, the final mutant constructs were verified by DNA

sequencing. Cells were fixedwith 4% formaldehyde and processed for indirect

immunofluorescence 48 hr following transfection. For the stable incorporation

assay (Barnhart et al., 2011), U2OS-LacO-TRE cells were also cotransfected

with TetR-GFP tomark the array, and cells were treated at 48 hr with or without
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15mM IPTG for 1 hr prior to fixation. HeLa cells were cultured in DMEMsupple-

mented with 10% FBS, 100 U/ml penicillin, and 100 mg/ml streptomycin, and

were transfected with WT YFP-CENP-A or YFP-CENP-AH115/L128A mutant

using Effectene (QIAGEN). Monoclonal anti-HA.11 antibody (clone 16B12;

Covance) was used at a 1:1,000 dilution, and polyclonal anti-CENP-B (clone

H-65; Santa Cruz Biotechnology) was used at a 1:1,000 dilution. FITC- and

Cy5-conjugated secondary antibodies (Jackson ImmunoResearch Laborato-

ries) were used at a 1:200 dilution. Cells were stained with DAPI and mounted

with VECTASHIELD medium (Vector Laboratories).

Images were captured using LAF software (Leica) with a charge-coupled

device camera (ORCA AG; Hamamatsu Photonics) mounted on an inverted

DMI6000B microscope (Leica) with a 1003 1.4 NA objective lens. Images

were collected in 0.2 mM z sections, deconvolved, and projected as a single

two-dimensional image using PhotoShop (version 12; Adobe) and Illustrator

(version 12; Adobe). For quantification of CENP-A and H3 mutant localization,

100 cells were counted and verified with multiple independent experiments.

For quantification of CENP-A mutant stable incorporation into the HJURP-

containing array, at least 30 cells were counted over 2 independent experi-

ments. For quantification of endogenous CENP-A recruitment to the

HJURP1–62- and HJURP1–208-containing arrays, the percentage of cells con-

taining CENP-A positive arrays was divided by the percentage previously re-

ported for HJURPFull-length (Barnhart et al., 2011).

Recombinant Protein Preparation

The expression and purification of human histone proteins prepared from

bacteria have been described (Luger et al., 1997; Black et al., 2004; Sekulic

et al., 2010). Plasmids for mutant histones (CENP-AS68Q, H3S68Q, and CEN-

P-AH115A/L128A) were generated by PCR site-directed mutagenesis. All

constructs for HJURP protein expression were generated in a modified pET

vector (kindly provided by G. Van Duyne, University of Pennsylvania, Philadel-

phia, PA) with an N-terminal maltose binding protein (MBP) fusion. MBP-

HJURP1–62, MBP-HJURP1–80, and MBP-HJURP1–80/W66A were expressed in

the BL21 Rosetta(DE3) bacterial strain. Cells were lysed by sonication in

25 mM Tris-Cl (pH 7.5), 300 mM NaCl, 5 mM bME. Lysates were incubated

with amylose resin (New England BioLabs) for 2 hr at 4�C and eluted with

15 mM maltose, followed by preparative SEC.

Analytical SEC

Purified recombinant HJURP protein (MBP-HJURP1–62, MBP-HJURP1–80, or

MBP-HJURPW66A) and human histone complexes ((CENP-A/H4)2, (H3/H4)2,

(CENP-AS68Q/H4)2, (H3S68Q/H4)2, or (CENP-AH115A/L128A/H4)) were mixed

equimolar (20 mM each in 2 ml vol) in 25 mM Tris (pH 7.5), 1 M NaCl (or

300 mM NaCl, where indicated), 20 mM MgCl2, 5 mM bME. Protein mixtures

were preincubated on ice for 30 min and injected onto a HiLoad 16/60

Superdex200 column (GE Healthcare) with running buffer identical to

sample buffer. Fractions were collected at 2 ml each and analyzed by

15% SDS-PAGE with Coomassie brilliant blue staining. The column was

calibrated with gel filtration protein standards (Bio-Rad) in identical buffer

conditions.

H/DX Reactions

A total of 30 ml of protein at 1 mg/ml of the indicated protein complex

sample was mixed with 90 ml D2O and incubated at 4�C. Final buffer

conditions in H/DX reactions are 0.25 mg/ml protein mix, 10 mM sodium

phosphate (pH 7.2), 1.75 mM bME, and either 300 mM, 500 mM, or 1M

NaCl. At each time point (10, 102, 103, 104, and 105 s), 20 ml of each

H/DX reaction was withdrawn and added to 30 ml of ice-cold quench

buffer (1.66 M guanidinium-HCL, 0.8% formic acid, 10% glycerol) and

immediately frozen in liquid N2. Samples were stored at �80�C prior to

analysis.

Protein Fragmentation, MS, and Data Analysis

Protein fragmentation, MS, and data analysis steps were performed similarly

to those described for nucleosome H/DX (Panchenko et al., 2011). In brief,

H/DX samples were thawed on ice and injected onto an immobilized pepsin

column at an initial flow rate of 50 ml/min for 3 min followed by 150 ml/min for

another 3 min. Pepsin (Sigma-Aldrich) was coupled to Poros 20 AL support

(Applied Biosystems) and packed into column housings of 2 mm 3 2 cm
nc.
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dimensions (IDEX). Protease-generated fragments were collected onto

a C18 HPLC trap column (2.5 3 0.5 mm, LC Packings). Peptides were

eluted into and through an analytical C18 HPLC column (0.3 3 75 mm;

Agilent) by a linear 12%–55% buffer B gradient at 6 ml/min (buffer A:

0.1% formic acid; buffer B: 0.1% formic acid, 99.9% acetonitrile). The

effluent was electrosprayed into the mass spectrometer (LTQ Orbitrap XL;

Thermo Fisher Scientific). SEQUEST (Bioworks v3.3.1) software program

(Thermo Fisher Scientific) was used to identify the likely sequence of the

parent peptides using nondeuterated samples via tandem MS. The ExMS

program (Kan et al., 2011) was used for data analysis. The level of H/DX

at each time point is expressed as the number of deuterons in the peptide,

or in terms of the percentage of exchange within the peptide. To correct for

loss of deuterium from each peptide during the H/DX-MS analysis,

measurements were made of reference samples that had been deuterated

under denaturing conditions.

Immunoblot

Whole-cell extracts of U2OS-LacO-TRE cells were collected 48 hr posttrans-

fection, along with untransfected control cells. A total of 5 3 104 cells was

separated by SDS-PAGE and transferred to nitrocellulose. Blots were probed

with an anti-HJURP antibody generated against a C-terminal fragment

(1 mg/ml) and anti-b-actin (Sigma-Aldrich; 1:1,000) as a loading control. Anti-

bodies were detected using a horseradish peroxidase-conjugated secondary

antibody at 1:10,000 (Jackson ImmunoResearch Laboratories) and enhanced

chemiluminescence (Thermo Scientific).
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